*2(x, *2(minus1(y), y)) -> *2(minus1(*2(y, y)), x)
↳ QTRS
↳ DependencyPairsProof
*2(x, *2(minus1(y), y)) -> *2(minus1(*2(y, y)), x)
*12(x, *2(minus1(y), y)) -> *12(minus1(*2(y, y)), x)
*12(x, *2(minus1(y), y)) -> *12(y, y)
*2(x, *2(minus1(y), y)) -> *2(minus1(*2(y, y)), x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
*12(x, *2(minus1(y), y)) -> *12(minus1(*2(y, y)), x)
*12(x, *2(minus1(y), y)) -> *12(y, y)
*2(x, *2(minus1(y), y)) -> *2(minus1(*2(y, y)), x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, *2(minus1(y), y)) -> *12(y, y)
Used ordering: Polynomial interpretation [21]:
*12(x, *2(minus1(y), y)) -> *12(minus1(*2(y, y)), x)
POL(*2(x1, x2)) = x1 + x1·x2
POL(*12(x1, x2)) = x1 + x2
POL(minus1(x1)) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(x, *2(minus1(y), y)) -> *12(minus1(*2(y, y)), x)
*2(x, *2(minus1(y), y)) -> *2(minus1(*2(y, y)), x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, *2(minus1(y), y)) -> *12(minus1(*2(y, y)), x)
POL(*2(x1, x2)) = 2·x1
POL(*12(x1, x2)) = x1 + x2
POL(minus1(x1)) = 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
*2(x, *2(minus1(y), y)) -> *2(minus1(*2(y, y)), x)